The role of insulin resistance in experimental diabetic retinopathy—Genetic and molecular aspects
نویسندگان
چکیده
BACKGROUND Diabetic retinopathy is characterized by defects in the retinal neurovascular unit. The underlying mechanisms of impairment-including reactive intermediates and growth-factor dependent signalling pathways and their possible interplay are incompletely understood. This study aims to assess the relative role of hyperglycemia and hyperinsulinemia alone or in combination on the gene expression patterning in the retina of animal models of diabetes. MATERIAL AND METHODS As insulinopenic, hyperglycemic model reflecting type 1 diabetes, male STZ-Wistar rats (60mg/kg BW; i.p. injection at life age week 7) were used. Male obese ZDF rats (fa/fa) were used as type-2 diabetes model characterized by persisting hyperglycemia and transient hyperinsulinemia. Male obese ZF rats (fa/fa) were used reflecting euglycemia and severe insulin resistance. All groups were kept till an age of 20 weeks on respective conditions together with appropriate age-matched controls. Unbiased gene expression analysis was performed per group using Affymetrix gene arrays. Bioinformatics analysis included analysis for clustering and differential gene expression, and pathway and upstream activator analysis. Gene expression differences were confirmed by microfluidic card PCR technology. RESULTS The most complex genetic regulation in the retina was observed in ZDF rats with a strong overlap to STZ-Wistar rats. Surprisingly, systemic insulin resistance alone in ZF rats without concomitant hyperglycemia did not induce any significant change in retinal gene expression pattern. Pathway analysis indicate an overlap between ZDF rats and STZ-treated rats in pathways like complement system activation, acute phase response signalling, and oncostatin-M signalling. Major array gene expression changes could be confirmed by subsequent PCR. An analysis of upstream transcriptional regulators revealed interferon-γ, interleukin-6 and oncostatin-M in STZ and ZDF rats. CONCLUSIONS: Systemic hyperinsulinaemia without hyperglycemia does not result in significant gene expression changes in retina. In contrast, persistent systemic hyperglycemia boosts much stronger expression changes with a limited number of known and new key regulators.
منابع مشابه
Effect of Resveratrol Supplementation on the SNARE Proteins Expression in Adipose Tissue of Stroptozotocin-Nicotinamide Induced Type 2 Diabetic Rats
Background: Glucose uptake by muscles and fat cells is carried out by the GLUT4 system. Isoforms of the SNAP23, syntaxin-4 and VAMP-2 play an important role in regulating GLUT-4 trafficking and fusion in adipocytes. The changes of SNARE proteins levels and thus impaired GLUT-4 displacement can be one of the etiological causes of type 2 diabetes.Due to changes in the expression of these proteins...
متن کاملEffects of Resveratrol on FOXO1 and FOXO3a Genes Expression in Adipose Tissue, Serum Insulin, Insulin Resistance and Serum SOD Activity in Type 2 Diabetic Rats
Induced oxidative stress in diabetes mellitus (DM) plays a critical role in insulin resistance. Fork head-related transcription factor (FOXO) proteins are important transcriptional factors involved in oxidative stress and insulin resistance. Resveratrol (RSV) is a polyphenol with hypoglycemic and antioxidant properties. The aims of the present study were to examine the effects of RSV on FOXO ge...
متن کاملThe effect of resistance training on protein-D surfactant and insulin resistance index in healthy and type 2 diabetic rats
Introduction Protein-D Surfactant (SPD) is a new factor associated with glucose intolerance, insulin resistance, and type 2 diabetes. The aim of the present study was to investigate the effects of resistance training on surfactant protein-D in streptozotocin-nicotinamide-induced diabetic rats. Materials and Methods In this experimental study، 48 adult male Wistar rats in the weight range of 2...
متن کاملSimultaneous Effects of Metformin and Sitagliptin on the Contents of Insulin Resistance Proteins Glucose Transporter 4 and Protein Kinase B in Diabetic Patients\' Adipose Tissue
Objective: Obesity is a factor in the development of insulin resistance and type 2 diabetes. Obesity contributes a wide variety of metabolic changes such as insulin resistance. The insulin signal mechanism to intra-cells occurs in insulin resistance, primarily in adipose tissue cells, which can be appropriate targets for therapeutic approaches by recognizing the proteins in this pathway. The st...
متن کاملSerum Levels of Interferon-Gamma in Patients with Diabetic Retinopathy
Background: In recent years, numerous studies have addressed the role of other factors, especially the immune system, on developing diabetic retinopathy. Given the role of interferons in regulating immune system activities, the present study was conducted to investigate serum levels of interferon-gamma in patients with diabetic retinopathy. Materials and Methods: The present research was condu...
متن کاملThe Effect of 12 Weeks Resistance Training on FOXO1 Expression in Hepatocytes, Glucose and Insulin in Diabetic Rats- A Brief-Report
Objective: In diabetic patients, hyperglycemia is associated with impaired FOXO signaling pathways in liver cells. This study aimed to determine the effect of resistance training on FOXO1 expression in liver hepatocytes and fasting glucose levels in type 2 diabetic rats. Materials and Methods: In this experimental study, type 2 diabetes induced by intraperitoneal injection of nicotinamide-STZ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017